python+keras:識(shí)別狗的品種,準(zhǔn)確率超過80%!
在這篇文章中,將教大家實(shí)現(xiàn)一個(gè)網(wǎng)頁應(yīng)用程序,該程序可以接收狗的圖片,然后輸出其品種,其準(zhǔn)確率超過80%!
我們將使用深度學(xué)習(xí)來訓(xùn)練一個(gè)識(shí)別狗品種的模型,數(shù)據(jù)集是狗圖像與他們的品種信息,通過學(xué)習(xí)圖像的特征來區(qū)分狗的品種。數(shù)據(jù)分析數(shù)據(jù)集可以從這里下載(https://s3-us-west-1.a(chǎn)mazonaws.com/udacity-aind/dog-project/dogImages.zip)。以下是關(guān)于數(shù)據(jù)的一些介紹:犬種總數(shù):133狗圖片總數(shù):8351(訓(xùn)練集:6680,驗(yàn)證集:835,測(cè)試集:836)最受歡迎的品種:阿拉斯加對(duì)應(yīng)96個(gè)樣本,博德牧羊犬對(duì)應(yīng)93個(gè)樣本按圖片數(shù)量排序的前30個(gè)品種如下:
我們還可以在這里看到一些狗的圖片和它們的品種:
數(shù)據(jù)預(yù)處理我們會(huì)把每個(gè)圖像作為一個(gè)numpy數(shù)組進(jìn)行加載,并將它們的大小調(diào)整為224x224,這是大多數(shù)傳統(tǒng)神經(jīng)網(wǎng)絡(luò)接受圖像的默認(rèn)大小,另外我們?yōu)閳D像的數(shù)量添加為另一個(gè)維度。from keras.preprocessing import image from tqdm import tqdm
def path_to_tensor(img_path): '''將給定路徑下的圖像轉(zhuǎn)換為張量''' img = image.load_img(img_path, target_size=(224, 224)) x = image.img_to_array(img) return np.expand_dims(x, axis=0)
def paths_to_tensor(img_paths): '''將給定路徑中的所有圖像轉(zhuǎn)換為張量''' list_of_tensors = [path_to_tensor(img_path) for img_path in tqdm(img_paths)] return np.vstack(list_of_tensors)最后,我們使用ImageDataGenerator對(duì)圖像進(jìn)行動(dòng)態(tài)縮放和增強(qiáng)train_datagen = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1./255, horizontal_flip=True, vertical_flip=True, rotation_range=20)
valid_datagen = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1./255.)
test_datagen = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1./255.)
train_generator = train_datagen.flow(train_tensors, train_targets, batch_size=32)valid_generator = train_datagen.flow(valid_tensors, valid_targets, batch_size=32)test_generator = train_datagen.flow(test_tensors, test_targets, batch_size=32)CNN我們將在預(yù)處理數(shù)據(jù)集上從頭開始訓(xùn)練卷積神經(jīng)網(wǎng)絡(luò)(CNN),如下所示:model = tf.keras.models.Sequential([ tf.keras.layers.Conv2D(16, (3,3), activation='relu', input_shape=(224, 224, 3)), tf.keras.layers.MaxPooling2D(2, 2), tf.keras.layers.Conv2D(32, (3,3), activation='relu'), tf.keras.layers.MaxPooling2D(2,2), tf.keras.layers.Conv2D(64, (3,3), activation='relu'), tf.keras.layers.MaxPooling2D(2,2), tf.keras.layers.Conv2D(128, (3,3), activation='relu'), tf.keras.layers.MaxPooling2D(2,2), tf.keras.layers.Conv2D(256, (3,3), activation='relu'), tf.keras.layers.MaxPooling2D(2,2), tf.keras.layers.Flatten(), tf.keras.layers.Dense(2048, activation='softmax'), tf.keras.layers.Dropout(0.5), tf.keras.layers.Dense(1024, activation='softmax'), tf.keras.layers.Dropout(0.5), tf.keras.layers.Dense(133, activation='softmax')])
model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy'])
checkpointer = tf.keras.callbacks.ModelCheckpoint(filepath='../saved_models/weights_best_custom.hdf5', verbose=1, save_best_only=True)

發(fā)表評(píng)論
請(qǐng)輸入評(píng)論內(nèi)容...
請(qǐng)輸入評(píng)論/評(píng)論長度6~500個(gè)字
最新活動(dòng)更多
-
3月27日立即報(bào)名>> 【工程師系列】汽車電子技術(shù)在線大會(huì)
-
4月30日立即下載>> 【村田汽車】汽車E/E架構(gòu)革新中,新智能座艙挑戰(zhàn)的解決方案
-
5月15-17日立即預(yù)約>> 【線下巡回】2025年STM32峰會(huì)
-
即日-5.15立即報(bào)名>>> 【在線會(huì)議】安森美Hyperlux™ ID系列引領(lǐng)iToF技術(shù)革新
-
5月15日立即下載>> 【白皮書】精確和高效地表征3000V/20A功率器件應(yīng)用指南
-
5月16日立即參評(píng) >> 【評(píng)選啟動(dòng)】維科杯·OFweek 2025(第十屆)人工智能行業(yè)年度評(píng)選
推薦專題
- 1 UALink規(guī)范發(fā)布:挑戰(zhàn)英偉達(dá)AI統(tǒng)治的開始
- 2 北電數(shù)智主辦酒仙橋論壇,探索AI產(chǎn)業(yè)發(fā)展新路徑
- 3 “AI寒武紀(jì)”爆發(fā)至今,五類新物種登上歷史舞臺(tái)
- 4 降薪、加班、裁員三重暴擊,“AI四小龍”已折戟兩家
- 5 國產(chǎn)智駕迎戰(zhàn)特斯拉FSD,AI含量差幾何?
- 6 光計(jì)算迎來商業(yè)化突破,但落地仍需時(shí)間
- 7 東陽光:2024年扭虧、一季度凈利大增,液冷疊加具身智能打開成長空間
- 8 封殺AI“照騙”,“淘寶們”終于不忍了?
- 9 優(yōu)必選:營收大增主靠小件,虧損繼續(xù)又逢關(guān)稅,能否乘機(jī)器人東風(fēng)翻身?
- 10 地平線自動(dòng)駕駛方案解讀